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Topic models

Methods of unsupervised text analysis

Describe main themes of a corpus
» Starts with term document matrix
» Specify a statistical model for how the text was generated
» Find most likely topics that generated the text

Similar to clustering, but with key differences

Many variants of topic models
Today: Latent Dirichlet Allocation and Structural Topic Model
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Latent Dirichlet Allocation (Blei, Ng, and Jordan 2003)

@ ldea: don't restrict topics to a single latent class, model topics as an

admixture.
@ Each document is a mixture over topics. Each topic is a mixture over

words.

@ Latent Dirichlet Allocation estimates:

» The distribution over words for each topic.
» The proportion of a document in each topic, for each document.

Maintained assumptions: Bag of words/fix number of topics ex ante.
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What this means in pictures

Say you have Each writes

that discuss a few
a lot of people. some texts

different topics

congress, nations,
power, votes, agree-
ment, bargaining

inference

&
estimator, data, anal-
ysis, variance, model,
&
The Latent Dirichlet Allocation estimates:

The topics- each is a distribution over words
The proportion of each document in each topic
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A Statistical Highlighter (With Many Colors)

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How man €8l oes an organism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life.
One rescarch team, using computer analy-
ses to compare known M concluded
that today’s organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128/g6RESN The
other researcher mapped genes
in a simple parasite and esti-
mated that for this organism,
800 genes are plenty todo the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don't
match precisely, those predictions

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8to 12,

Roberts (UCSD)

“are not all that far apart,” especially in
comparison to the 75,0000génes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen-
sus answer may be more than just aW%
numbcrs game, particularly as more ang
mare m are completely mapped and
sequenced. “It may be a way of orgamzmg
any newly M ," explains
Arcady Mushegian, a computational mo-
lecular biologist at the National Center

for Biotechnology Information (NCBI)
in Bethesda, Maryland. Comparing an

mnﬂlnl and Hau|w and
gansa rm vea
-4 genes 122 gen nme-
. . anl
gene sat

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.
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Topic Models

Two primary matrices of interest:
1) Topical Prevalence Matrix (DxK)

[ Topicl Topic2 TopicK ]|
Docl 2 1 0.05
0 = Doc?2 2 1 3
| DocD 0 0 5]
2) Topical Content Matrix (VxK)

i Topicl Topic2 TopicK |

“text” .02 .001 0.001

IBT - “data” .001 .02 0.001
| “analysis” | .01 .01 0.0005 |

Roberts (UCSD) STM May 25, 2017 7 /41




Vanilla Latent Dirichlet Allocation~~ Objective Function

- Consider document i, (i =1,2,...,N)

Roberts (UCSD)

=} 5
STM



Vanilla Latent Dirichlet Allocation~~ Objective Function
- Consider document i, (i =1,2,..., N).

- Suppose there are M; total words and x; is an M; x 1 vector, where
Xim describes the mt" word used in the document.

Roberts (UCSD) STM May 25, 2017 8 /41



Vanilla Latent Dirichlet Allocation~~ Objective Function
- Consider document i, (i =1,2,..., N).

- Suppose there are M; total words and x; is an M; x 1 vector, where
Xim describes the mt" word used in the document.

Roberts (UCSD) STM May 25, 2017 8 /41



Vanilla Latent Dirichlet Allocation~~ Objective Function

- Consider document i, (i =1,2,..., N).

- Suppose there are M; total words and x; is an M; x 1 vector, where
Xim describes the mt" word used in the document.

0;lac ~ Dirichlet(ax)

Roberts (UCSD) STM May 25, 2017 8 /41



Vanilla Latent Dirichlet Allocation~~ Objective Function
- Consider document i, (i =1,2,..., N).

- Suppose there are M; total words and x; is an M; x 1 vector, where
Xim describes the mt" word used in the document.

0;lac ~ Dirichlet(ax)
Zim|0; ~ Multinomial(1, 6;)

Roberts (UCSD) STM May 25, 2017 8 /41



Vanilla Latent Dirichlet Allocation~~ Objective Function

- Consider document i, (i =1,2,..., N).

- Suppose there are M; total words and x; is an M; x 1 vector, where
Xim describes the mt" word used in the document.

0;lac ~ Dirichlet(ax)
Zim|0; ~ Multinomial(1, 6;)
Xim|Bk, Zimk =1 ~ Multinomial(1, Bx)

Roberts (UCSD) STM May 25, 2017 8 /41



Vanilla Latent Dirichlet Allocation~~ Objective Function

- Consider document i, (i =1,2,..., N).

- Suppose there are M; total words and x; is an M; x 1 vector, where
Xim describes the mt" word used in the document.

Bk ~ Dirichlet(n)

0;lac ~ Dirichlet(ax)
Zim|0; ~ Multinomial(1, 6;)
Xim|Bk, Zimk =1 ~ Multinomial(1, B)
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Vanilla Latent Dirichlet Allocation~~ Objective Function

- Consider document i, (i =1,2,..., N).

- Suppose there are M; total words and x; is an M; x 1 vector, where
Xim describes the mt" word used in the document.

B

o
0,-|a
Zim|0;

Xim| Bk Zimk = 1

Optimization:

~ Dirichlet(n)

~ Gamma(a, 3)

~ Dirichlet(a)

~ Multinomial(1, 6;)
~  Multinomial(1, B)

- Variational Approximation~- Find “closest” distribution
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Vanilla Latent Dirichlet Allocation~~ Objective Function

- Consider document /i, (i =1,2,..., N).

- Suppose there are M; total words and x; is an M; x 1 vector, where
Xim describes the mt™" word used in the document.

B

o
0,-|a
Zim|0;

Xim| Bk Zimk = 1

Optimization:

~ Dirichlet(n)

~ Gamma(a, )

~ Dirichlet(a)

~ Multinomial(1, 6;)
~  Multinomial(1, B)

- Variational Approximation~~ Find “closest” distribution

- Gibbs sampling ~~ MCMC algorithm to approximate posterior
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Example: Japanese Campaign Manifestos (Catalinac 2016)

Typical Manifesto:
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Japanese Elections:
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Example: Japanese Campaign Manifestos (Catalinac 2016)

Japanese Elections:

Election Administration Commission runs elections — district level

Required to submit manifestos for all candidates to National Diet
Collected from 1950- 2009

- Available only at district level
- Until: 2009 national library made texts available on microfilm

- Collected from microfilm, hand transcribed (no OCR worked), used a
variety of techniques to create a TDM

- Harder for Japanese
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Example: Japanese Campaign Manifestos (Catalinac 2016)

- Applies Vanilla LDA

- Output: topics (with Japanese characters)
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Example: Japanese Campaign Manifestos (Catalinac 2016)

Topic 1
L

Postal privatization

Topic 2 Topic 3
8 it
A b3
313 B2
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BR 314
bt HE
ZR b3
HERBT £33
Al 3 4
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£33 R

Reducing Wasteful Public
Spending

rts (UC

Pork for the District

Topic 4
X

Policies for the district

Topic 5
B

Political Reform

National Security Policy
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Example: Japanese Campaign Manifestos (Catalinac 2011)

Proportions of each Manifesto Devoted to Pork

0.1+

Change in Mean Proportion of Each Manifesto Devoted to Pork Over Time
0 3 . 1

1
!

1
1990

Roberts (UCSD)
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1995
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1
2005
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Example: Japanese Campaign Manifestos (Catalinac 2011)

Change in Mean Proportion of Each Manifesto Devoted to Foreign Policy Over Time

Proportions of each Manifesto Devoted to Foreign Policy Issues

' ! | ! !
1990 1995 2000 2005
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Measuring Topic Performance: Out of Sample Prediction

How well does our model perform?~ predict new documents?
Problem~~ in sample evaluation leads to overfit.
Solution~ evaluate performance on held out data

For held out document xZ;

Perplexity = exp (—log p(xgu¢|p, 7))
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What's Prediction Got to Do With It7?

- Prediction~ One Task

- Do we care about it?~ Social science application where we're
predicting new texts?

- Does it correspond to how we might use the model?

Chang et al 2009 ( “Reading the Tea Leaves") :
- Compare perplexity with human based evaluations

- NEGATIVE relationship between perplexity and human based
evaluations

Different strategy~~ measure quality in topics and clusters

- Statistics: measure cohesiveness and exclusivity (Roberts, et al 2014)

- Experiments: measure topic and cluster quality
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Topic 1 | bill congressman earmarks following house
Topic 2 | immigration reform security  border worker
Topic 3 | earmark egregious pork fiscal today
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- Define vk = (vik, vak, - - ., vik) be the top words for a topic
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Measuring Cohesiveness and Exclusivity

We also want topics that are exclusive~ few replicates of each topic

Mk v

K
> i1 My

Suppose again we pick L top words. Measure Exclusivity for a topic as for
a topic as:

Exclusivity(k,v) =

Exclusivity, = Z 5#
Jivi€vy Z/=1 Hj

K
Exclusivity = <Z Exclusivityk) /K

k=1

SN P 3) pprEn

k=1j:vj€vy Z/ 1M
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How do we Choose K7

Generate many candidate models

1) Assess Cohesiveness/Exclusivity, select models on frontier

2) Use experiments
3) Read
4) Final decision~» combination

Roberts (UCSD) STM May 25, 2017
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Examples of Topic Models

@ How do senators present their work to the public? What explains
variation in representational style? (Grimmer 2013)
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Elements of a Common Structure

@ Measuring variation of topics with some observed covariates

@ Interest in aggregate trends (e.g. proportion of total press release
from a given center about appropriations)

@ We want to tell a story not just about what, but how and why
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Goal of Structural Topic Model (Roberts, Stewart, Tingley
et al (2014))

Provide a basic framework for applied users to incorporate observed data
which is

e Easy to use (R package)

o Flexible

@ Integrated with support tools (visualization/uncertainty
calculation/model selection)

@ See structuraltopicmodel.com

Roberts (UCSD) STM May 25, 2017 23 /41
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Leveraging Information Within and About Texts

@ Previous methods leverage the information within documents

» methods developed in computer science and statistics
» primarily analyzing unstructured text
» use words within document to infer its subject

@ But, we also have information about documents

captured by metadata: data about data

e.g. author, source, date, audience

important because speech is deeply contextual

e.g. who says it, where, when, to whom

we want to avoid throwing away valuable information we have

e Structural Topic Model (STM)
» general method for modeling documents with context
» modeling context in document sets with enable comparison
» two uses of metadata: topic prevalence and topical content
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STM = LDA + Contextual Information

@ STM provides two ways to include contextual information
» Topic prevalence can vary by metadata
* e.g. Democrats talk more about education than Republicans
» Topic content can vary by metadata
* e.g. Democrats are less likely to use the word “life” when talking about
abortion than Republicans
@ Including context improves the model:

» more accurate estimation
> better qualitative interpretability

Roberts (UCSD) ST™M May 25, 2017 25 /41



STM: What this means in pictures

Say you have Each writes that discuss a few
a lot of people. some text different topics
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\
3 congress, nations,

power, votes, agree-
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Statistics
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ysis, variance, model,
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The Structural Topic Model

@ 0, D x K document-topic matrix < logistic normal glm with
covariates

» Covariate-specific prior with global topic covariance
> 0;. ~ LogisticNormal(Xjvy, X)
@ 3, K x V topic-word matrix <= multinomial logit with covariates
» Each topic is now a covariate-specific deviation from a baseline
distribution.
> gk- o exp(m+ K(topic) + K/(cov) + K(int))
» Thee parts: topic, covariate, topic-covariate interaction
@ Each token has a topic drawn from the document mixture

» Draw token topic z; ,, from Multinomial(6;)
» Draw observed word w; , from Multinomial(Sx=;,)
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Albertson and Gadarian: Anxiety and Immigration

Treatment/Control:

@ “... When you think about immigration, what makes you worried?..."

@ “... When you think about immigration, what do you think of?...

Original analysis:

@ Human coders using pre-established coding categories (Fear, Anger,
Enthusiasm)

@ Treatment had impact on Fear and Anger.

Roberts (UCSD) STM May 25, 2017 29 / 41



Topics

e Topic 1

Roberts (UCSD)

STM



Topics

e Topic 1

Roberts (UCSD)

STM



Topics

@ Topic 1
> illeg, job, immigr, tax, pai, american, care, welfar, crime, system, secur,
social, cost, health, servic, school, languag

STM May 25, 2017 30/ 41



Topics

@ Topic 1
> illeg, job, immigr, tax, pai, american, care, welfar, crime, system, secur,
social, cost, health, servic, school, languag
» “problems caused by the influx of illegal immigrants who are crowding
our schools and hospitals, lowering the level of education and the
quality of care in hospitals.”

Roberts (UCSD) STM May 25, 2017 30/ 41



Topics

@ Topic 1

> illeg, job, immigr, tax, pai, american, care, welfar, crime, system, secur,
social, cost, health, servic, school, languag

» “problems caused by the influx of illegal immigrants who are crowding
our schools and hospitals, lowering the level of education and the
quality of care in hospitals.”

» “crime lost jobs benefits paid to illegals health care and food....we
cannot feed the world when we have americans starving, etc”

Roberts (UCSD) ST™M May 25, 2017 30/ 41



Topics

@ Topic 1

> illeg, job, immigr, tax, pai, american, care, welfar, crime, system, secur,
social, cost, health, servic, school, languag

» “problems caused by the influx of illegal immigrants who are crowding
our schools and hospitals, lowering the level of education and the
quality of care in hospitals.”

» “crime lost jobs benefits paid to illegals health care and food....we
cannot feed the world when we have americans starving, etc”

Roberts (UCSD) ST™M May 25, 2017 30/ 41



Topics

@ Topic 1
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» “problems caused by the influx of illegal immigrants who are crowding
our schools and hospitals, lowering the level of education and the
quality of care in hospitals.”

> “crime lost jobs benefits paid to illegals health care and food....we
cannot feed the world when we have americans starving, etc”

o Topic 2
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Topics

@ Topic 1
» illeg, job, immigr, tax, pai, american, care, welfar, crime, system, secur,
social, cost, health, servic, school, languag
» “problems caused by the influx of illegal immigrants who are crowding
our schools and hospitals, lowering the level of education and the
quality of care in hospitals.”
> “crime lost jobs benefits paid to illegals health care and food....we
cannot feed the world when we have americans starving, etc”
o Topic 2
» immigr, illeg, legal, border, need, worri, mexico, think, countri, law,
mexican, make, america, worker
> “i worry about the republican party doing something very stupid. this
country was built on immigration, to deny anyone access to citizenship
is unconstitutional. what happened to give me your poor, sick, and
tired?”
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Topics

@ Topic 1
» illeg, job, immigr, tax, pai, american, care, welfar, crime, system, secur,
social, cost, health, servic, school, languag
» “problems caused by the influx of illegal immigrants who are crowding
our schools and hospitals, lowering the level of education and the
quality of care in hospitals.”
> “crime lost jobs benefits paid to illegals health care and food....we
cannot feed the world when we have americans starving, etc”
o Topic 2
» immigr, illeg, legal, border, need, worri, mexico, think, countri, law,
mexican, make, america, worker
> “i worry about the republican party doing something very stupid. this
country was built on immigration, to deny anyone access to citizenship
is unconstitutional. what happened to give me your poor, sick, and
tired?”
» “border control, certain illegal immigrants tolerated, and others
immediately deported.”
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Effects on Topic 1
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Figure: Topic 1.

Roberts (UCSD) STM May 25, 2017 31 /41



Different Newspapers, Different Perspectives
(Roberts, Stewart, Airoldi 2017)
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Different Newspapers, Different Perspectives
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Fatwas (Lucas et al 2015 and Nielsen 2014)

fatwas: Islamic legal rulings on any virtually any aspect of human
behavior, ranging from sex and dietary restrictions to violent Jihad.

We combine expert assessments 33 clerics (20 Jihadists and 13
non-Jihadists) with their Fatwas, giving us 11,045 texts.

Estimate STM with Jihadi vs. non-Jihadi classification as a topic
prevalence parameter.
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Jihad

Non-Jihadi Clerics <-—- topic used more by ———> Jihadi Clerics

(Difference in Topic Frequencies)
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100 Topics Occuring in "Normal" Fatwas (Jihad Score <0)
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Figure: Estimated topic proportions by fighting the west and excommunication
topics, separated out by jihadist versus jihadist coding.

ts (UCS

STM May 25, 2017

36 / 41



Jihad

Money, Pilgrimage
and Marriage
Ra@adan

Figure: The network of correlated topics for a 15-topic Structural Topic Model
with Jihadi/not-Jihadi as the predictor of topics in Arab Muslim cleric writings.
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stm Package in R

@ Many functions for reading in texts and manipulating the corpus.
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https://goo.gl/j6T42I

stm Package in R

@ Many functions for reading in texts and manipulating the corpus.

@ Simple GLM style syntax for the model using formulas

mod.out <- stm(documents,vocab, K=10,
prevalence= “treatment,
content= “gender,
data=metadata)
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@ Many functions for reading in texts and manipulating the corpus.
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© Simple syntax for including smooth functional forms for continuous
variables via s ().
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stm Package in R

@ Many functions for reading in texts and manipulating the corpus.
@ Simple GLM style syntax for the model using formulas

mod.out <- stm(documents,vocab, K=10,
prevalence= “treatment,
content= “gender,
data=metadata)

© Simple syntax for including smooth functional forms for continuous
variables via s().

@ Wrappers to automate model selection.

Available at structuraltopicmodel.com — example data/code:
https://goo.gl/j6T421
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Lots of quantities of interest

@ Label topics (4 styles of most informative words) (summary,
labelTopics)

@ Plot predicted topic/covariate relationships and Cl's with uncertainty
(plot)
© Documents highly associated with particular topics (findThoughts)
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New Functionality: stmBrowser

http:
//pages.ucsd.edu/~meroberts/stm-online-example/index.html
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